5789 measured reflections

 $R_{\rm int} = 0.053$

3086 independent reflections 1452 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-[5-(Benzo[d]thiazol-2-yl)thiophen-2yl]benzo[d]thiazole

Kim Potgieter,^a Peter Mayer,^b Eric Hosten^a and Thomas I. A. Gerber^a*

^aDepartment of Chemistry, Nelson Mandela Metropolitan University, 6031 Port Elizabeth, South Africa, and ^bDepartment of Chemistry, Ludiwig-Maximilians University, D-81377 München, Germany Correspondence e-mail: thomas.gerber@nmmu.ac.za

Received 22 January 2010; accepted 1 February 2010

Key indicators: single-crystal X-ray study; T = 200 K; mean σ (C–C) = 0.005 Å; R factor = 0.043; wR factor = 0.051; data-to-parameter ratio = 14.8.

The structure of the title compound, $C_{18}H_{10}N_2S_3$, consists of a central thiophene ring and two terminal thiazole rings. The two S atoms of the thiazole rings are *trans* to the thiophene S atom sulfur. The thiazole rings are approximately coplanar with the thiophene ring, with dihedral angles of 6.23 (11) and 4.81 (11)° between them. In the crystal, zigzag chains are formed along [010] by weak C-H···N interactions.

Related literature

For the synthesis of thiophene derivatives, see: Kaleta *et al.* (2006); Minetto *et al.* (2005); Bayh *et al.* (2005). For their conformation, see: Alberti *et al.* (1986); Hagen (1986); Salman (1982) and for their applications, see: Seed *et al.* (2003); Cheylan *et al.* (2006); Karimian (2009); Kiryanov *et al.* (2001); Shi *et al.* (1996).

Experimental

Crystal data

 $\begin{array}{l} C_{18}H_{10}N_2S_3\\ M_r = 350.48\\ \text{Monoclinic, } P2_1/c\\ a = 15.7297 \ (14) \text{ Å}\\ b = 8.2396 \ (5) \text{ Å}\\ c = 12.8160 \ (12) \text{ Å}\\ \beta = 112.872 \ (11)^\circ \end{array}$

V = 1530.4 (2) Å ³
Z = 4
Mo $K\alpha$ radiation
$\mu = 0.48 \text{ mm}^{-1}$
T = 200 K
$0.34 \times 0.15 \times 0.01 \ \text{mm}$

Data collection

Oxford XCalibur diffractometer
Absorption correction: multi-scan
(CrysAlis PRO; Oxford
Diffraction, 2009)
$T_{\min} = 0.839, \ T_{\max} = 1.000$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.043$	208 parameters
$vR(F^2) = 0.051$	H-atom parameters constrained
S = 0.72	$\Delta \rho_{\rm max} = 0.29 \text{ e A}^{-3}$
086 reflections	$\Delta \rho_{\rm min} = -0.30 \text{ e A}^{-5}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-H$ $H \cdot \cdot \cdot A$		$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$	
$C16-H16\cdots N1^{i}$	0.95	2.63	3.444 (4)	144	
Symmetry code: (i) -	$r \pm 1$ $u \pm 1$ -7	1			

Symmetry code: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{1}{2}$.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010) and PARST (Nardelli, 1995).

The authors thank Professor P. Klüfers for generous allocation of diffractometer time.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2199).

References

- Alberti, A., Chatgilialoglu, C. & Guerra, M. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 1179–1182.
- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Bayh, O., Awad, H., Mongin, F., Hoarau, C., Trecourt, F., Quequiner, G., Marsais, F., Blanco, F., Abarca, B. & Ballesteros, R. (2005). *Tetrahedron*, 61, 4779–4784.
- Cheylan, S., Fraleoni-Morgera, A., Puigdollers, J., Voz, C., Setti, L., Alcubilla, R., Badenes, G., Costa-Bizzari, P. & Lanzi, M. (2006). *Thin Solid Films*, 497, 16–19.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Hagen, K. (1986). J. Mol. Struct. 145, 359-366.
- Kaleta, Z., Makowski, B. T., Soos, T. & Dembinski, R. (2006). Org. Lett. 8, 1625–1628.
- Karimian, K. (2009). Expert Opin. Ther. Pat. 19, 369-371.
- Kiryanov, A. A., Seed, A. J. & Sampson, P. (2001). Tetrahedron Lett. 42, 8797– 8800.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. **39**, 453–457.
- Minetto, G., Raveglia, L. F., Sega, A. & Taddei, M. (2005). *Eur. J. Org. Chem.* pp. 5277–5288.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Oxford Diffraction (2009). *CrysAlis PRO*. Oxford Diffraction Ltd, Abington, England.
- Salman, S. R. (1982). Org. Magn. Res. 20, 151-153.
- Seed, A. J., Cross, G. J., Toyne, K. J. & Goodby, J. W. (2003). Liq. Cryst. 30, 1089–1107.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). publCIF. In preparation.

Shi, D. F., Bradshaw, T. D., Wrigley, S., McCall, C. J., Lelieveld, P., Fichtner, I. & Stevens, M. F. G. (1996). *J. Med. Chem.* **39**, 3375–3384.

supplementary materials

Acta Cryst. (2010). E66, o531 [doi:10.1107/S1600536810004009]

2-[5-(Benzo[d]thiazol-2-yl)thiophen-2-yl]benzo[d]thiazole

K. Potgieter, P. Mayer, E. Hosten and T. I. A. Gerber

Comment

Derivatives of thiophene have shown promise in photovoltaic (Cheylan *et al.*, 2006), liquid crystal (Kiryanov *et al.* 2001) and therapeutic applications (Seed *et al.*, 2003). On the other hand, thiazole derivatives have been evaluated for biological activity (Karimian, 2009), especially against certain breast carcinoma cell lines (Shi *et al.* 1996).

In the present work the structure of 2-(5-benzo[d]thiazol-2-yl)thiophen-2-yl)benzo[d]thiazole has been determined to explore its suitability as a tridentate ligand for various metal ions.

The structure consists of a central thiophenyl ring and two terminal thiazolyl rings, with the two sulfur atoms of the latter rings in *trans* positions to the thiophenyl sulfur atom (see Fig. 1). The thiazolyl rings with S1 and S3 are approximately coplanar with the thiophenyl ring, with dihedral angles of $6.23 (11)^{\circ}$ and $4.81 (11)^{\circ}$ respectively. The dihedral angle between the two thiazolyl rings is $10.39 (8)^{\circ}$.

The bonding parameters illustrate that C8—C9 and C10—C11 bonds in the thiophenyl ring are localized double bonds (1.354 (5) and 1.358 (4) Å respectively), as are the N1—C7 and N2—C12 bonds (1.286 (4) and 1.308 (4) Å respectively).

Taking into account merely interactions with hydrogen-acceptor distances at least 0.1 Å shorter than the sum of van der Waals radii, the molecules are linked by weak interactions of the type C16—H16…N1, which lead to the formation of zig-zag-chains along [010] (see Fig. 2). The shortest distance in the parallel stacking of the molecules is 3.6371 (17) Å, observed for the planes through the thiophenyl ring and the phenyl ring (C13 to C18) of a neighboring molecule.

Experimental

All chemicals used (reagent grade) were commercially available. A mass of 0.281 g (0.0020 mol) of 2,5-thiophenedicarboxaldehyde was dissolved in methanol (20 cm³), and 0.502 g (0.0040 mol) of 2-aminothiophenol was added with stirring. The mixture was heated under reflux for an hour, then cooled to room temperature and filtered. After standing at 0°C for 24 h, a yellow precipitate was collected. Recrystallization from ethanol gave yellow needles (0.378 g, 54 %), with the formulation $C_{18}H_{10}N_2S_3$ and suitable for X-ray analysis. *M*.p. 203–206 °C.

Refinement

The C-bound H atoms were positioned geometrically (0.95 Å for CH) and treated as riding on their parent atoms with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of the title compound (anisotropic displacement ellipsoids drawn at the 50% probablility level).

Fig. 2. The zig-zag-chains established by weak interactions of the type C–H…N.

2-[5-(Benzo[d]thiazol-2-yl)thiophen-2-yl]benzo[d]thiazole

Crystal	data
---------	------

$C_{18}H_{10}N_2S_3$	F(000) = 720
$M_r = 350.48$	$D_{\rm x} = 1.521 \ (1) \ {\rm Mg \ m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 15.7297 (14) Å	Cell parameters from 1275 reflections
b = 8.2396 (5) Å	$\theta = 4.2 - 26.2^{\circ}$
c = 12.8160 (12) Å	$\mu = 0.48 \text{ mm}^{-1}$
$\beta = 112.872 \ (11)^{\circ}$	T = 200 K
V = 1530.4 (2) Å ³	Needles, yellow
Z = 4	$0.34 \times 0.15 \times 0.01 \text{ mm}$

Data collection

Oxford XCalibur diffractometer	3086 independent reflections
Radiation source: fine-focus sealed tube	1452 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.053$
Detector resolution: 15.9809 pixels mm ⁻¹	$\theta_{\text{max}} = 26.3^\circ, \ \theta_{\text{min}} = 4.2^\circ$
ω scans	$h = -19 \rightarrow 19$
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009)	$k = -9 \rightarrow 10$
$T_{\min} = 0.839, T_{\max} = 1.000$	$l = -9 \rightarrow 15$
5789 measured reflections	

Refinement

Refinement on F^2
Least-squares matrix: full
$R[F^2 > 2\sigma(F^2)] = 0.043$
$wR(F^2) = 0.051$
S = 0.72

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_0^2) + (0.006P)^2]$

	where $P = (F_0^2 + 2F_c^2)/3$
3086 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
208 parameters	$\Delta \rho_{max} = 0.29 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
S1	0.19188 (5)	-0.01268 (9)	0.55789 (7)	0.0372 (2)
S2	0.40390 (5)	0.14749 (8)	0.43819 (7)	0.0294 (2)
S3	0.65397 (5)	0.41064 (8)	0.64495 (7)	0.0351 (2)
N1	0.22730 (15)	-0.0478 (2)	0.3780 (2)	0.0306 (7)
N2	0.57525 (15)	0.3239 (2)	0.4337 (2)	0.0258 (6)
C1	0.11335 (19)	-0.1200 (3)	0.4461 (3)	0.0294 (8)
C2	0.1446 (2)	-0.1266 (3)	0.3573 (3)	0.0299 (8)
C3	0.0918 (2)	-0.2090 (3)	0.2584 (3)	0.0393 (9)
H3	0.1119	-0.2156	0.1975	0.047*
C4	0.0108 (2)	-0.2802 (3)	0.2499 (3)	0.0421 (9)
H4	-0.0250	-0.3369	0.1825	0.051*
C5	-0.0200 (2)	-0.2717 (3)	0.3369 (3)	0.0436 (9)
H5	-0.0766	-0.3220	0.3284	0.052*
C6	0.0300 (2)	-0.1917 (3)	0.4350 (3)	0.0383 (9)
H6	0.0084	-0.1851	0.4946	0.046*
C7	0.25959 (18)	0.0157 (3)	0.4775 (3)	0.0252 (7)
C8	0.34453 (18)	0.1056 (3)	0.5237 (3)	0.0233 (7)
C9	0.38812 (19)	0.1676 (3)	0.6290 (3)	0.0321 (8)
H9	0.3656	0.1568	0.6875	0.039*
C10	0.46999 (19)	0.2493 (3)	0.6426 (2)	0.0292 (8)
H10	0.5091	0.2988	0.7115	0.035*
C11	0.48737 (18)	0.2503 (3)	0.5468 (2)	0.0242 (7)
C12	0.56531 (19)	0.3212 (3)	0.5304 (3)	0.0252 (8)
C13	0.70982 (19)	0.4587 (3)	0.5569 (3)	0.0278 (8)
C14	0.6576 (2)	0.4025 (3)	0.4477 (3)	0.0280 (8)
C15	0.6891 (2)	0.4295 (3)	0.3612 (3)	0.0372 (8)
H15	0.6546	0.3929	0.2862	0.045*
C16	0.7711 (2)	0.5105 (3)	0.3873 (3)	0.0401 (9)
H16	0.7925	0.5313	0.3287	0.048*
C17	0.8235 (2)	0.5627 (3)	0.4957 (3)	0.0392 (9)
H17	0.8806	0.6163	0.5109	0.047*
C18	0.79350 (19)	0.5377 (3)	0.5819 (3)	0.0370 (9)
H18	0.8291	0.5735	0.6567	0.044*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0338 (5)	0.0475 (5)	0.0327 (6)	-0.0084 (4)	0.0156 (4)	-0.0013 (4)
S2	0.0278 (4)	0.0338 (4)	0.0285 (5)	-0.0019 (4)	0.0131 (4)	-0.0010 (4)
S3	0.0355 (5)	0.0414 (5)	0.0292 (6)	-0.0081 (4)	0.0136 (4)	-0.0030 (4)

supplementary materials

N1	0.0267 (16)	0.0288 (16)	0.039 (2)	-0.0070 (12)	0.0154 (14)	-0.0019 (12)
N2	0.0235 (14)	0.0293 (14)	0.0270 (18)	-0.0032 (12)	0.0124 (13)	0.0000 (12)
C1	0.0301 (18)	0.0262 (18)	0.031 (2)	0.0001 (15)	0.0110 (16)	0.0036 (14)
C2	0.0319 (19)	0.0250 (18)	0.031 (2)	0.0034 (15)	0.0107 (17)	0.0043 (15)
C3	0.046 (2)	0.045 (2)	0.032 (2)	-0.0112 (17)	0.0211 (19)	-0.0050 (17)
C4	0.037 (2)	0.047 (2)	0.037 (3)	-0.0182 (17)	0.0080 (19)	-0.0047 (17)
C5	0.035 (2)	0.048 (2)	0.048 (3)	-0.0127 (17)	0.016 (2)	0.0046 (19)
C6	0.033 (2)	0.046 (2)	0.039 (3)	-0.0050 (17)	0.0173 (19)	0.0065 (18)
C7	0.0272 (19)	0.0201 (16)	0.031 (2)	0.0017 (15)	0.0142 (17)	0.0023 (16)
C8	0.0214 (17)	0.0226 (16)	0.028 (2)	-0.0018 (14)	0.0125 (16)	0.0004 (15)
C9	0.0338 (19)	0.0379 (18)	0.030 (2)	-0.0021 (15)	0.0182 (18)	0.0067 (16)
C10	0.0250 (18)	0.0350 (18)	0.025 (2)	-0.0007 (15)	0.0066 (16)	-0.0008 (15)
C11	0.0260 (18)	0.0194 (16)	0.025 (2)	0.0006 (14)	0.0079 (17)	0.0001 (14)
C12	0.0295 (19)	0.0170 (16)	0.029 (2)	0.0018 (14)	0.0107 (17)	0.0010 (14)
C13	0.0241 (18)	0.0270 (18)	0.036 (2)	0.0003 (14)	0.0154 (17)	0.0032 (15)
C14	0.0318 (19)	0.0253 (17)	0.029 (2)	0.0035 (15)	0.0148 (17)	0.0016 (15)
C15	0.045 (2)	0.0423 (19)	0.029 (2)	-0.0049 (17)	0.0191 (18)	-0.0056 (16)
C16	0.041 (2)	0.0410 (19)	0.051 (3)	-0.0025 (17)	0.033 (2)	0.0007 (19)
C17	0.031 (2)	0.0324 (18)	0.056 (3)	-0.0053 (16)	0.020 (2)	-0.0017 (18)
C18	0.0306 (19)	0.039 (2)	0.033 (2)	-0.0048 (15)	0.0033 (17)	-0.0002 (16)

Geometric parameters (Å, °)

S1—C1	1.728 (3)	С6—Н6	0.9500
S1—C7	1.761 (3)	C7—C8	1.438 (3)
S2—C11	1.720 (3)	C8—C9	1.353 (3)
S2—C8	1.729 (3)	C9—C10	1.403 (3)
S3—C13	1.725 (3)	С9—Н9	0.9500
S3—C12	1.747 (3)	C10—C11	1.357 (3)
N1—C7	1.286 (3)	C10—H10	0.9500
N1—C2	1.384 (3)	C11—C12	1.445 (3)
N2—C12	1.308 (3)	C13—C18	1.389 (3)
N2	1.397 (3)	C13—C14	1.398 (4)
C1—C6	1.394 (3)	C14—C15	1.396 (4)
C1—C2	1.404 (4)	C15—C16	1.374 (3)
C2—C3	1.392 (3)	C15—H15	0.9500
C3—C4	1.368 (4)	C16—C17	1.380 (4)
С3—Н3	0.9500	C16—H16	0.9500
C4—C5	1.379 (4)	C17—C18	1.375 (4)
C4—H4	0.9500	С17—Н17	0.9500
C5—C6	1.366 (4)	C18—H18	0.9500
С5—Н5	0.9500		
?…?	?		
C1—S1—C7	89.01 (14)	С8—С9—Н9	123.5
C11—S2—C8	90.91 (14)	С10—С9—Н9	123.5
C13—S3—C12	89.42 (14)	C11—C10—C9	112.8 (3)
C7—N1—C2	111.1 (3)	C11—C10—H10	123.6
C12—N2—C14	109.4 (2)	С9—С10—Н10	123.6
C6—C1—C2	120.8 (3)	C10-C11-C12	127.9 (3)

C6—C1—S1	129.9 (3)	C10—C11—S2	111.7 (2)
C2—C1—S1	109.2 (2)	C12—C11—S2	120.3 (2)
N1—C2—C3	125.9 (3)	N2—C12—C11	124.4 (3)
N1—C2—C1	115.2 (3)	N2—C12—S3	116.0 (2)
C3—C2—C1	118.9 (3)	C11—C12—S3	119.5 (2)
C4—C3—C2	119.3 (3)	C18—C13—C14	121.4 (3)
С4—С3—Н3	120.4	C18—C13—S3	129.3 (3)
С2—С3—Н3	120.4	C14—C13—S3	109.2 (2)
C3—C4—C5	121.5 (3)	C15—C14—N2	124.7 (3)
C3—C4—H4	119.3	C15—C14—C13	119.4 (3)
С5—С4—Н4	119.3	N2—C14—C13	115.9 (3)
C6—C5—C4	120.8 (3)	C16—C15—C14	118.3 (3)
С6—С5—Н5	119.6	С16—С15—Н15	120.9
C4—C5—H5	119.6	C14—C15—H15	120.9
C5—C6—C1	118.6 (3)	C15—C16—C17	122.2 (3)
С5—С6—Н6	120.7	С15—С16—Н16	118.9
С1—С6—Н6	120.7	С17—С16—Н16	118.9
N1—C7—C8	124.3 (3)	C18—C17—C16	120.3 (3)
N1—C7—S1	115.5 (2)	С18—С17—Н17	119.8
C8—C7—S1	120.2 (2)	С16—С17—Н17	119.8
C9—C8—C7	129.4 (3)	C17—C18—C13	118.3 (3)
C9—C8—S2	111.5 (2)	C17—C18—H18	120.8
C7—C8—S2	119.1 (2)	C13—C18—H18	120.8
C8—C9—C10	113.0 (3)		
C7—S1—C1—C6	-178 8 (3)	C9-C10-C11-C12	-179 3 (2)
C7-S1-C1-C2	0.3 (2)	C9-C10-C11-S2	-0.9(3)
C7-N1-C2-C3	-179.5 (3)	C8 = S2 = C11 = C10	0.7 (2)
C7-N1-C2-C1	0.5 (3)	C8 = S2 = C11 = C12	179.2 (2)
C6-C1-C2-N1	178 7 (2)	C14-N2-C12-C11	179.5 (2)
S1-C1-C2-N1	-0.5(3)	C14 - N2 - C12 - S3	-0.6(3)
C6-C1-C2-C3	-13(4)	C10-C11-C12-N2	-1767(3)
S1-C1-C2-C3	179 5 (2)	S2-C11-C12-N2	51(4)
N1 - C2 - C3 - C4	-179.5(3)	C10-C11-C12-S3	3.4 (4)
C1 - C2 - C3 - C4	0 5 (4)	\$2-C11-C12-\$3	-174 81 (13)
$C_2 - C_3 - C_4 - C_5$	0.3(5)	C13 = 83 = C12 = N2	0.6.(2)
C_{3} C_{4} C_{5} C_{6}	-0.3(5)	C13 - 83 - C12 - C11	-1795(2)
C4-C5-C6-C1	-0.6(5)	C12 = S3 = C13 = C18	-179.6(3)
$C_{2}^{2}-C_{1}^{2}-C_{6}^{2}-C_{5}^{2}$	1 4 (4)	C12 = 83 = C13 = C14	-0.4(2)
81-C1-C6-C5	-1796(2)	C12 = N2 = C14 = C15	-1788(3)
$C_{2} = N_{1} = C_{7} = C_{8}$	-1800(2)	C12 = N2 = C14 = C13	0.2(3)
$C_2 = N_1 = C_7 = S_1$	-0.3(3)	C18 - C13 - C14 - C15	-1.5(4)
C1 - S1 - C7 - N1	0.0(2)	S3-C13-C14-C15	179 3 (2)
C1 - S1 - C7 - C8	1797(2)	C18 - C13 - C14 - N2	179.4 (2)
N1 - C7 - C8 - C9	-1749(3)	S3-C13-C14-N2	0.2(3)
S1-C7-C8-C9	54(4)	N_{2} C14 C15 C16	1792(2)
N1-C7-C8-S2	56(4)	C13-C14-C15-C16	03(4)
S1—C7—C8—S2	-174.02 (14)	C14-C15-C16-C17	1.2 (4)
C11—S2—C8—C9	-0.3 (2)	C15-C16-C17-C18	-1.4 (5)
C_{11} S_{2} C_{8} C_{7}	179 2 (2)	C16-C17-C18-C13	01(4)

supplementary materials

C7—C8—C9—C10 S2—C8—C9—C10 C8—C9—C10—C11	-179.6 (2) -0.1 (3) 0.7 (4)	C14—C13—C18—C17 S3—C13—C18—C17	-	1.3 (4) -179.7 (2)
Hydrogen-bond geometry (Å, °)				
D—H···A	D—H	H···A	$D \cdots A$	D—H···A
C16—H16···N1 ⁱ Symmetry codes: (i) $-x+1$, $y+1/2$, $-z+1/2$	0.95	2.63	3.444 (4)	144

Fig. 1

